Estrus Synchronization Programs in Dairy Cattle

Andrew Fidler, DVM
April 30, 2009
Introduction

• ↑ milk production ➔ ↓ reproductive performance
 – Due to declining conception rates (70% ➔ 35%) and estrus detection rates (32%)

 – Solution: Selecting for fertility in strategic breeding program
 • Takes generations to see results

• Immediate solution: hormonal intervention
 – Ex. Ovsynch doesn’t rely on estrus detection
Introduction

• Grazing/Seasonal calving
 – Yearly calving interval
 – If not, culled, or carried over to next breeding period

• Confinement
 – Conception within a window that maximizes her profitability
Introduction

• Typical Scenario
 – Spontaneous estrus → inseminated
 – Anestrous → hormonal intervention

• Intensive approach
 – Programmed breeding for all cows
 • Controls time of first insemination, time of subsequent insemination in open cows, and treats anestrous cows
Estrus Synchronization

• Use of hormones that are identical to, or analogs of, the reproductive hormones naturally found in the body

• 1960’s – exogenous progestogens to block ovulation
 – Good synchrony; low conception rate

• 1970’s – PGF$_{2\alpha}$ = uterine luteolysin

• Combined progestogens and PGF$_{2\alpha}$
 – Low conception rates, especially with prolonged progestogen treatment

• 1990’s – persistent DF causes depressed fertility
 – Developed programs that control follicle development, luteal phase length, and time of ovulation
Estrus Synchronization

• Most systems use a method for:
 1) Controlling follicular wave development
 2) Preventing premature ovulation in cyclic cows
 - and promoting ovulation in anestrous cows
 3) Regressing the CL in cyclic cows
 4) Synchronizing estrus and/or ovulation at the end of treatment

GnRH
PGF
Controlling Follicular Wave Development

• Follicular development occurs in waves
 – 2-3 waves per cycle
 – 8-10 days per wave
 – DF resulting from each wave undergoes ovulation or atresia

 • Luteal regression/progesterone withdrawal
 → final DF maturation
 → ↑ estradiol
 → LH surge
 → ovulation
Controlling Follicular Wave Development

• GnRH-induced LH release causes ovulation or luteinization of the *physiologically mature* DF
 – Loss of the DF leads to emergence of a new follicular wave

• Estradiol can be used for follicular wave synchronization, but is not approved for use in dairy cattle in the U.S.
POP QUIZ

• We achieve follicular wave synchronization with the use of
 – GnRH
Progestogen Supplementation

• Three primary advantages
 1) Suppresses LH surge and estrous behavior
 2) Effective method for treating anestrous
 - increases DF development
 - primes estrous expression and LH surge
 3) Effective method for treating cystic ovaries
 - decreases LH pulsatility in cystic cows → turnover of the cystic follicle
POP QUIZ

• Our most commonly used tool for progestogen supplementation is . . .
 – CIDR

• What does CIDR stand for?
 – Controlled Internal Drug Release
Regressing the CL in Cyclic Cows

• Luteolytic dose of PGF$_{2\alpha}$
 – Efficacious beginning at day 5-7 after estrus
 – Variation in interval to estrus
 • Can be minimized if given when DF is mature but not atretic
 – Days 7-9 or 14-16 after estrus

 – Give PGF$_{2\alpha}$ in a series (11-14 day interval), or 7 days after follicular synchronization
POP QUIZ

What are common names of prostaglandin products?
- Lutalyse
- Estrumate
- Prostamate
Synchronizing Estrous Expression and/or Ovulation

- Ovulatory GnRH dose typically given 48 hours after a luteolytic dose of PGF$_{2\alpha}$

- Timed AI systems induce fertile ovulation without estrous expression
POP QUIZ

- What are common names of GnRH products?
 - Cystorelin
 - Factrel
 - Fertagyl
 - Ovacyst
Synchronizing First Insemination

• Remember:
 – Herds with many anestrous cows will respond poorly, regardless of treatment
 – Estrus expression and conception will be affected by metabolic status
Synchronizing First Insemination

- Injection of PGF$_{2\alpha}$
 - Two treatments 11-14 days apart effectively synchronizes estrus, although timing is variable
 - Requires estrous detection
Synchronizing First Insemination

• Progesterone and PGF\(_{2\alpha} \)
 – PGF\(_{2\alpha} \) shortens period of progesterone exposure required and prevents progesterone-associated decrease in conception rates
Synchronizing First Insemination

• GnRH and PGF$_{2\alpha}$
 – Synchronizes both a follicular wave and subsequent estrus if given at 7 day interval
 – Estrus and ovulation 2-3 days after PGF$_{2\alpha}$
 – 10% estrus before PGF$_{2\alpha}$
 • Didn’t respond to GnRH because late in cycle
Synchronizing First Insemination

Ovsynch

1. GnRH
2. PGF$_{2\alpha}$
3. GnRH
4. Insemination

Steps:
7 days
2 days
1 day
Synchronizing First Insemination

Ovsynch

10-30% won’t synchronize
Synchronizing First Insemination

Cosynch

GnRH

PGF\textsubscript{2α}

GnRH and Insemination

7

2
Synchronizing First Insemination

Select-synch

1. GnRH
2. PGF$_{2\alpha}$
3. GnRH and Insemination

Heat Detect and AI
Synchronizing First Insemination

• GPG protocols
 – Economic return depends on heat detection ability
 • Herds with low heat detection rates see biggest benefit from a timed AI program
 – Low conception rate
 • Somewhat offset by 100% submission rate
 • Due to poor follicular wave synchrony related to response to first GnRH
Synchronizing First Insemination

• **GPG protocols**
 – More effective when started at day 5-12 of cycle
 • Pre-synchronization may improve synchronization, conception, and pregnancy rates
 – Single PGF$_{2\alpha}$ 12-14 days before GPG
 – Two injections of PGF$_{2\alpha}$ at 14 day interval
 – Combination of PGF$_{2\alpha}$ and GnRH
 » 2 day interval; GnRH 6 d before GPG

 – Is pre-synchronization worth it?
 • Lots of injections over long period of time
 • Conception rates 30-40%
 • Eliminates need for multiple daily sessions of estrous detection
Synchronizing First Insemination

• GPG + Progesterone
 – Prevents premature estrus expression during 7 days between first GnRH and PGF$_{2\alpha}$
 – Benefits anovulatory and cystic cows
 – Improves overall synchrony and pregnancy rate
• Conception rate to first insemination will be less than 100%

→ Synchronization of second insemination
POP QUIZ

• *Diagnosing a 90 day pregnancy.* . . .

 – Placentome size?
 • Dime

 – Crown-to-nose length?
 • 3 finger widths

 – Fetal size?
 • Rat
Synchronizing Second Insemination

• Synchronization of first insemination

• Less than half of open cows are detected in estrus at expected time after first insemination
 – Estrus without ovulation
 – Return to anestrous
 – Failure to express estrus
 – Long inter-estrus interval
 – Early pregnancy loss
Synchronizing Second Insemination

• Progesterone supplementation
 – For 6-8 days beginning on day 12-14 after insemination
 – Withdrawal increases synchrony in open cows
 – Can give GnRH at insertion
 – Requires estrus detection

 – May decrease preg rate to initial AI; may not improve preg rate to second AI
Synchronizing Second Insemination

• GPG after open diagnosis
 – First GnRH can be given to all cows 7 days prior to preg check
 – Open cows then receive PGF$_{2\alpha}$, then GnRH 2 days later
 – If ultrasound used on day 29, second insemination occurs on day 31 or 32

 – “Rapid resynchronization” – can skip the first GnRH of GPG
 • At 29 day preg check, open cow should be at day 5-9 of cycle, with a CL that responds to PGF$_{2\alpha}$
 • Conception rate the same, but calving-to-conception interval 22-23 days shorter
 • First insemination synchronization should provide adequate follicular wave control – first GnRH of GPG not beneficial
Synchronizing Heifers

• Ovsynch success low
 • 50-60% synch rate

• Progesterone + PGF$_{2\alpha}$
 • Synchronization, but may not improve conception rate or pregnancy rate

• MGA + PGF$_{2\alpha}$
 • Takes a long time, but good pregnancy rates, cheap, and little labor required
“Can you reduce your breeding costs?”
by Jeff Stevenson March 10, 2009

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Heat Detection</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovsynch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$8.90</td>
</tr>
<tr>
<td>Presynch + Ovsynch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$13.90</td>
</tr>
<tr>
<td>AI if heat after Presynch + Ov</td>
<td>$9.23</td>
<td>$7.51</td>
<td>$6.21</td>
<td>$5.33</td>
<td></td>
</tr>
</tbody>
</table>

*per cow cost (with PGF=$2.50 and GnRH=$3.20)
*assuming 80% cycling before Ovsynch initiated
POP QUIZ

• On this day in history. . .

 – April 30, 1789
 • George Washington took the presidential oath

 – April 30, 1945
 • As Allied forces were closing in on Berlin, Adolf Hitler and Eva Braun committed suicide after being married for one day

 – April 30, 1975
 • North Vietnamese troops captured Saigon, ending the Vietnam War and beginning the period of reunification of Vietnam as a communist country

 – April 30, 2009
 • Willie Nelson turns 75
Measuring Reproductive Performance

• Comparison to benchmarks, other herds, past performance
• Evaluate success of reproductive intervention
 – ex. Estrus synchronization program
• Evaluate heat detection, insemination, etc.
Herd Reproductive Parameters

• Reproductive Status
 – Fresh cows (<VWP)
 – Cows bred but not confirmed pregnant
 – Open cows
 – Pregnant lactating cows
 – Dry lactating cows
 – ‘Do not breed’ cows
 – Sold or dead cows
Herd Reproductive Parameters

• Number of pregnancies per time period
 – If a dairy intends to calve 120 animals/year, then it must produce slightly more than 10 pregnancies/month
 • Accounting for abortions and cow culling
Herd Reproductive Parameters

• **Days open** (Calving-to-conception interval)
 – An average calculated on an annual basis
 • Significant momentum and lag
 • Distorted by exclusions (‘do not breed’ cows)

• **Calving Interval**
 – The time period between calvings
 – Shortening this interval is the ultimate goal of reproductive management, but it is a weak monitor
 • Severe momentum and lag
 • Excludes first-lactation animals and culled cows
 • An average
Herd Reproductive Parameters

• Estrus detection rate

 \[
 = \frac{\text{number of estruses detected}}{\text{expected number of estruses}}
 \]

 - Can also be evaluated by “Days to first breeding”

 - If less than 18 days beyond the VWP, then estrus detection is probably acceptable
Herd Reproductive Parameters

• Conception rate
 – The proportion of breedings that result in conception
 – Can measure for pregnant cows (ignores repeat breeders), bred cows, stratified by lactation, season, or technician, etc.
 – Lag and momentum
 – Very biased because cows not bred are excluded
 • Missing heats can increase conception rate
 • A group of cows may remain open indefinitely and never be bred – not included in calculation
Herd Reproductive Parameters

• Pregnancy Rate (Pregnancy Risk)
 = the proportion of open cows that become pregnant during a specified time period (21 days)

 = the number of cows that become pregnant in 21 d
 the number of cows eligible to become pregnant

 “eligible to become pregnant”
 - past the voluntary waiting period
 - known to be open at the beginning of the 21 d period
 - may or may not include repro culls/ ‘do not breed’ cows
Pregnancy Rate

• Cross-sectional pregnancy rates
 – Divide the past year into 21 d periods of time

• Longitudinal pregnancy rates
 – Divide the time following the VWP into 21 d periods of time

• Cohort pregnancy rates
 – Follows a group of cows for a certain time period
 • Groups formed by calving date
 – Can measure success of a systematic breeding program
 – Best way to monitor changes in reproductive performance
Resources

• “The use of hormonal treatments to improve the reproductive performance of lactating dairy cows in feedlot or pasture-based management systems”

• “Current Therapy in Large Animal Theriogenology Vol. 2”
 – Youngquist and Threlfall

• LSU Therio website

• UF Dairy Reproduction Cookbook
 – www.animal.ufl.edu/extension/reproguide/index.shtml